Contenido Exclusivo

Fujitsu apuesta por tecnología de aprendizaje profundo

Fujitsu está desarrollando un nuevo y eficiente mecanismo de distribución de memoria para las Redes Neuronales Profundas (Deep Neural Networks, DNN). Utilizado de manera extensiva para muchas aplicaciones de Inteligencia Artificial (IA) que implican reconocimiento y clasificación de voz y objetos, el uso de DNN avanzados requiere de recursos computacionales masivos, imponiendo severas demandas de infraestructura de computación existentes.

Con esta nueva solución desarrollada por Fujitsu Laboratories of Europe, el paralelismo de modelos se usa para distribuir los requerimientos de memoria DNN de una forma gestionada fácilmente, transparente y automatizada. Como resultado, la capacidad de las infraestructuras actuales para hacer frente a las aplicaciones de IA de gran escala se mejora considerablemente sin necesidad de nuevas inversiones. 

De igual manera, logra un nuevo proceso de distribución de la memoria transformando las capas de redes neuronales diseñadas arbitrariamente, en redes equivalentes, en las que algunas o todas sus capas son reemplazadas por un número de partes de subcapa más pequeñas. Estas partes subcapa están diseñadas para ser funcionalmente equivalentes a las originales, pero son computacionalmente mucho más eficientes para ejecutar. Es importante destacar que, dado que las capas originales y nuevas provienen del mismo perfil, el proceso de formación del DNN ahora transformado y distribuido converge a la del DNN original sin costo adicional.

Los ejemplos de aplicaciones para la nueva solución incluyen análisis de salud, análisis y clasificación de imagen de satélite, procesamiento de lenguaje natural, donde los modelos de aprendizaje profundo a gran escala son requeridos para modelar y aprender la gran complejidad del lenguaje humano, datos basados en gráficos de gran escala incluyendo dispositivos IoT, transacciones financieras, servicios de redes sociales, etc.

Fujitsu Laboratories of Europe evaluaron esta tecnología incluyendo la aplicación del nuevo mecanismo a Caffe, un marco de aprendizaje profundo de código abierto ampliamente utilizado por las comunidades de I+D de todo el mundo. La solución logró más del 90% de eficiencia en la distribución de la memoria al transformar las capas completamente conectadas de AlexNet en varias NVIDIA GPUs. Como una tecnología independiente de hardware, tiene la capacidad de explotar la potencia computacional de ambas unidades de procesamiento convencionales, así como los aceleradores de hardware actuales y emergentes, incluyendo, por ejemplo, NVIDIA GPUs, Intel Xeon Phi, FPGA, ASIC, etc. u otros chips de hardware alternativos específicamente diseñados para aumentar la eficiencia computacional en Deep Learning.

Estos laboratorios trabajan en el aprendizaje de máquinas como parte de las soluciones y servicios digitales que se están desarrollando bajo la iniciativa de Fujitsu centrada en el ser humano, llamada Zinrai. Sus actividades incluyen una amplia colaboración y co-creación con clientes de Fujitsu y organizaciones de investigación de EMEIA, incluyendo el Hospital Clínico San Carlos de Madrid con la solución HIKARI AI, la Universidad de Sevilla con el análisis de datos para aplicaciones turísticas y el Centro de Innovación 5G de UK.

Lo Más Reciente

Presentan guía mundial para utilizar gemelos digitales en ensayos clínicos

El ENRICHMENT Playbook es la "primera guía mundial" dirigida...

Pure Storage lanza GenAI Pod: diseños llave en mano para acelerar la innovación de IA

Pure Storage presentó una solución que proporciona diseños llave...

La digitalización ofrece mejoras en la gestión de casos en el sector público

Los factores macroeconómicos globales y locales que cambian rápidamente,...

Cómo impulsar el crecimiento de las empresas en la era de la IA

La inteligencia artificial está revolucionando los negocios. Sin embargo,...

Newsletter

Recibe lo último en noticias e información exclusiva.

Mireya Cortés
Mireya Cortés
Editora CIO Ediworld Online. La puedes contactar en mcortes@ediworld.com.mx

Presentan guía mundial para utilizar gemelos digitales en ensayos clínicos

El ENRICHMENT Playbook es la "primera guía mundial" dirigida a la industria de dispositivos médicos, que detalla cómo utilizar gemelos virtuales para acelerar los...

Pure Storage lanza GenAI Pod: diseños llave en mano para acelerar la innovación de IA

Pure Storage presentó una solución que proporciona diseños llave en mano construidos en su plataforma de almacenamiento de datos. Se trata de Pure Storage...

La digitalización ofrece mejoras en la gestión de casos en el sector público

Los factores macroeconómicos globales y locales que cambian rápidamente, siguen ejerciendo una presión cada vez mayor sobre el sector público de México. El gobierno...