Contenido Exclusivo

¡Postúlate para los Premios a “Los Mejores 100 CIO de México 2024”!

CIO Ediworld se complace en anunciarle la apertura de la convocatoria para recibir...

¡Convocatoria Abierta! Los Mejores 20 CISO de México 2024

CIO Ediworld le invita a participar en la tercera edición...

Tres desafíos que deben abordarse antes de que los modelos IA generativa tengan una adopción generalizada

Se tiene estimado que para 2026, más del 80% de las empresas habrán utilizado interfaces o modelos de programación de aplicaciones de Inteligencia Artificial generativa (GenAI), ya que se ha convertido en una de las principales prioridades de alta dirección y ha provocado una enorme innovación en nuevas herramientas más allá de los modelos básicos, de acuerdo con Gartner. Sin embargo, el mayor desafío está en la calidad de los datos que alimentan la IA para el futuro. 

”La IA ciertamente ha estado llegando a los titulares en 2023. Hay una multitud de opiniones alrededor de las ventajas y desventajas, pero una cosa es cierta: la IA sólo es tan buena como la calidad de los datos que alimentan la tecnología”, indicó Alejandro Luna, country manager de Infor.

Un estudio de 2022, hecho en Brasil por la asociación global GS1, con más de 2,000 empresas, ha señalado que apenas un 9% de la industria ha adoptado soluciones de inteligencia artificial. Un gran salto de los 4%, en 2021, pero un desarrollo aún bastante lento. La cantidad de empresas que está evaluando la posibilidad de adoptar la IA Generativa  crece a cada día, pero el avance no se da de manera más acelerada por tres motivos: la gestión de datos en las empresas, el contexto macroeconómico que exige resultados a corto plazo y el desconocimiento de posibles beneficios y ventajas operativas  en la adopción de esta tecnología. 

“Según estudios, la adopción de la IA Generativa puede aumentar en 6% los ingresos de la empresa y en las compañías que deciden hacer un all-in en IA, puede representar hasta un 20% del EBITDA. Es una ventaja tremenda, pero hay que hacer lo básico, que es preparar la data para que la IA sea eficiente”, añadió el directivo.

Lo que se nota en el contexto empresarial es que el tema ‘transformación digital’ ha migrado del área de TI a la mesa de los CEOs y ocupa un puesto de mayor destaque en las decisiones corporativas. No es casualidad que la expectativa del IDC es que el sector de software empresarial alcance los USD$80 mil millones en 2023, un crecimiento de 5% en comparación con el año pasado.

Otros desafíos permean la adopción de la IA Generativa

Alejandro Luna afirmó que el ritmo de cambio en el mundo de GenAI es rápido y las organizaciones que no respondan a tiempo pueden quedarse atrás. Idealmente, las empresas deberían adoptar esta poderosa tecnología en lugar de rechazarla. Pero eso definitivamente no significa que la talla única sirve para todos cuando se trata de modelos GenAI y ciertamente hay una serie de desafíos que deben abordarse antes de que los modelos GenAI puedan obtener una adopción generalizada en entornos empresariales. En este contexto describe:

  1. Primero, está el tema de la confiabilidad. Si bien el contenido generado a partir de un modelo de lenguaje grande parece original, en realidad imita un patrón basado en un conjunto de datos de entrenamiento similar al que ha estado expuesto. 
  1. En segundo lugar, tenemos problemas de privacidad. Los datos y las condiciones de entrada que comparten los usuarios se utilizan para entrenar el modelo más grande. 
  1. Luego está el tema del sesgo. La calidad de los datos es importante a la hora de aplicar técnicas analíticas o de Inteligencia Artificial, porque los resultados de estas soluciones serán tan buenos o malos como la calidad de los datos utilizados. El hecho de introducir datos erróneos o sesgados conlleva riesgos. Los algoritmos que alimentan los sistemas basados en IA sólo pueden asumir que los datos a analizar son fiables, así que en caso de que sean erróneos, los resultados serán engañosos y el proceso de toma de decisiones se verá comprometido. Además, el tiempo y los recursos utilizados para realizar el análisis de datos habrá resultado inútil, lo que conlleva gastos.

Alejandro Luna mencionó que a pesar de los desafíos, las empresas que adoptan la IA de manera correcta pueden cosechar ventajas sustanciales. “Tenemos casos de clientes en el que, con el apoyo de nuestra solución de IA, el tiempo de procesamiento de pedidos se ha reducido en un 30% y el ahorro con distribución ha llegado a la cifra de US $1,5 millón de dólares anuales”.

Por último, en términos de cómo evolucionará la IA generativa en los próximos cinco a diez años, las inversiones en la tecnología aumentarán enormemente, tanto en términos de generación de mejores modelos como en el espacio de hardware, con chips más rápidos y potentes y la necesidad de más anchos de banda de red, precisó el directivo de Infor.

Lo Más Reciente

Cuatro consejos para retener el talento en su área de TI

Para tener un equipo de TI productivo y feliz...

Empresas: cómo enfrentar la caída del peso post electoral

Luego de las elecciones, el peso mexicano, que hasta...

Transformación digital en el Retail: el poder de la arquitectura

En México el comercio electrónico tiene un desempeño por...

IA Generativa y el futuro del trabajo

La inteligencia artificial generativa (IA gen) está acaparando titulares...

Newsletter

Recibe lo último en noticias e información exclusiva.

Cuatro consejos para retener el talento en su área de TI

Para tener un equipo de TI productivo y feliz en el trabajo, se necesita apostar por acciones que fomenten el orgullo por estar en...

Empresas: cómo enfrentar la caída del peso post electoral

Luego de las elecciones, el peso mexicano, que hasta hace un tiempo se mantenía fuerte, tuvo una fluctuación: primero perdió valor frente al dólar...

Transformación digital en el Retail: el poder de la arquitectura

En México el comercio electrónico tiene un desempeño por encima de la media de países de Latinoamérica. Según previsiones de Statista, en 2027 el...